• Sims@lemmy.ml
    link
    fedilink
    arrow-up
    1
    ·
    1 month ago

    Unfortunately it was paywalled.

    I’m not an expert, but ASML uses a very powerful ultraviolet ‘cannon’ to edge patterns into their layers https://wikiless.northboot.xyz/wiki/Extreme_ultraviolet_lithography, and apparently (from the few lines of article txt) the Chinese are going for particle accelerators for edging instead. I wonder if they will use a beam or just fire away on a masked wafer.

    Slightly ot, I think hybrid photonic computing is the future, but that would probably also benefit from smaller construction techniques, so …go go China.

    If someone is interested in chip construction and new AI trends in that area, I can recommend ‘Asianometry’ https://www.youtube.com/channel/UC1LpsuAUaKoMzzJSEt5WImw / https://redirect.invidious.io/channel/UC1LpsuAUaKoMzzJSEt5WImw and especially ‘Anastacia in tech’ https://www.youtube.com/channel/UCORX3Cl7ByidjEgzSCgv9Yw / https://redirect.invidious.io/channel/UCORX3Cl7ByidjEgzSCgv9Yw

    They have not reported on this Chinese particle thing yet, tho…

    • ☆ Yσɠƚԋσʂ ☆@lemmy.mlOP
      link
      fedilink
      arrow-up
      4
      arrow-down
      1
      ·
      1 month ago

      here’s an archived version https://archive.ph/NrC6B

      it does mention the advantages over ASML approach

      Compared with current ASML EUV technology, SSMB is a more ideal light source. It has a higher average power and higher chip production output with lower unit cost.

      ASML creates an EUV source from laser-produced plasma, where strong laser pulses are projected to liquid microdroplets of tin. The laser crushes the droplets and produces EUV pulse light during the impact. After complex filtering and focusing, an EUV light source with a power of about 250W is produced.

      Before reaching the chip, the EUV beam undergoes reflection from 11 mirrors, each causing about a 30 per cent energy loss. As a result, the power of the beam is less than 5W when reaching the wafer. This can become an issue when manufacturing turns to 3nm or 2nm.

      SSMB technology avoids such concerns. SSMB beams achieve a higher output power of 1000W, and due to its narrow bandwidth, fewer reflecting mirrors are needed, which naturally generates higher terminal power.

      I do think there is a lot of potential for alternative computing substrates like photonics or graphene.

      Incidentally, there was a breakthrough fabricating 12-inch wafers with MoS2 which has potential to be a much faster substrate than silicon https://www.sciencedirect.com/science/article/abs/pii/S2095927323004206

      This kind of stuff could end up being like going from vacuum tubes to transistors. We’re pushing the limits of what’s physically possible with silicon now, but even a crude alternative substrate could naturally afford far better performance, and then could be optimized for decades on end.